ChipFind - документация

Электронный компонент: APT200GN60JDQ4

Скачать:  PDF   ZIP
050-7611 Rev B 3-2005
APT200GN60JDQ4
TYPICAL PERFORMANCE CURVES
MAXIMUM RATINGS
All Ratings: T
C
= 25C unless otherwise specified.


































































APT Website - http://www.advancedpower.com
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
Utilizing the latest Field Stop and Trench Gate technologies, these IGBT's have ultra
low V
CE(ON)
and are ideal for low frequency applications that require absolute minimum
conduction loss. Easy paralleling is a result of very tight parameter distribution and
a slightly positive V
CE(ON)
temperature coefficient. A built-in gate resistor ensures
extremely reliable operation, even in the event of a short circuit fault. Low gate charge
simplifies gate drive design and minimizes losses
600V Field Stop
Trench Gate: Low V
CE(on)
Easy Paralleling
5s Short Circuit Capability
Intergrated Gate Resistor: Low EMI, High Reliability
175C Rated
Applications: welding, inductive heating, solar inverters, motor drives, UPS, pass transistor
600V
APT200GN60JDQ4
C
E
G
SO
T-2
27
ISOTOP
file # E145592
"UL Recognized"
G
E
E
C
STATIC ELECTRICAL CHARACTERISTICS
Characteristic / Test Conditions
Collector-Emitter Breakdown Voltage (V
GE
= 0V, I
C
= 4mA)
Gate Threshold Voltage (V
CE
= V
GE
, I
C
= 3.2mA, T
j
= 25C)
Collector-Emitter On Voltage (V
GE
= 15V, I
C
= 200A, T
j
= 25C)
Collector-Emitter On Voltage (V
GE
= 15V, I
C
= 200A, T
j
= 125C)
Collector-Emitter On Voltage (V
GE
= 15V, I
C
= 100A, T
j
= 25C)
Collector-Emitter On Voltage (V
GE
= 15V, I
C
= 100A, T
j
= 125C)
Collector Cut-off Current (V
CE
= 600V, V
GE
= 0V, T
j
= 25C)
2
Collector Cut-off Current (V
CE
= 600V, V
GE
= 0V, T
j
= 125C)
2
Gate-Emitter Leakage Current (V
GE
= 20V)
Intergrated Gate Resistor
Symbol
V
(BR)CES
V
GE(TH)
V
CE(ON)
I
CES
I
GES
R
GINT
UNIT
Volts
A
nA
Symbol
V
CES
V
GE
I
C1
I
C2
I
CM
SSOA
P
D
T
J
,T
STG
APT200GN60JDQ4
600
20
283
158
600
600A @600V
682
-55 to 175
UNIT
Volts
Amps
Watts
C
Parameter
Collector-Emitter Voltage
Gate-Emitter Voltage
Continuous Collector Current @ T
C
= 25C
Continuous Collector Current @ T
C
= 110C
Pulsed Collector Current
1
Switching Safe Operating Area @ T
J
= 175C
Total Power Dissipation
Operating and Storage Junction Temperature Range
MIN
TYP
MAX
600
5
5.8
6.5
1.05
1.45
1.85
1.65
1.15
1.19
50
TBD
600
2
050-7611 Rev B 3-2005
APT200GN60JDQ4
THERMAL AND MECHANICAL CHARACTERISTICS
UNIT
C/W
Volts
oz
gm
Ibin
Nm
MIN
TYP
MAX
.22
.33
2500
1.03
29.2
10
1.1
Characteristic
Junction to Case
(IGBT)
Junction to Case
(DIODE)
RMS Voltage (
50-60Hz Sinusoidal Wavefom from Terminals to Mounting Base for 1 Min.)
Package Weight
Maximum Terminal & Mounting Torque
Symbol
R
JC
R
JC
V
Isolation
W
T
Torque
Symbol
C
ies
C
oes
C
res
V
GEP
Q
g
Q
ge
Q
gc
SSOA
SCSOA
t
d(on)
t
r
t
d(off)
t
f
E
on1
E
on2
E
off
t
d(on)
t
r
t
d(off)
t
f
E
on1
E
on2
E
off
Test Conditions
Capacitance
V
GE
= 0V, V
CE
= 25V
f = 1 MHz
Gate Charge
V
GE
= 15V
V
CE
= 300V
I
C
= 100A
T
J
= 175C, R
G
= 1.0
7
, V
GE
=
15V, L = 100H, V
CE
= 600V
V
CC
= 360V, V
GE
= 15V,
T
J
= 150C, R
G
= 1.0
7
Inductive Switching (25C)
V
CC
= 400V
V
GE
= 15V
I
C
= 200A
R
G
= 1.0
7
T
J
= +25C
Inductive Switching (125C)
V
CC
=400V
V
GE
= 15V
I
C
= 200A
R
G
= 1.0
7
T
J
= +125C
Characteristic
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Gate-to-Emitter Plateau Voltage
Total Gate Charge
3
Gate-Emitter Charge
Gate-Collector ("Miller") Charge
Switching Safe Operating Area
Short Circuit Safe Operating Area
Turn-on Delay Time
Current Rise Time
Turn-off Delay Time
Current Fall Time
Turn-on Switching Energy
4
Turn-on Switching Energy (Diode)
5
Turn-off Switching Energy
6
Turn-on Delay Time
Current Rise Time
Turn-off Delay Time
Current Fall Time
Turn-on Switching Energy
4
4
Turn-on Switching Energy (Diode)
5
5
Turn-off Switching Energy
6
6
MIN
TYP
MAX
14100
4610
4000
8.2
1180
85
660
600
5
50
80
560
100
13
15
11
50
80
620
70
14
16
10
UNIT
pF
V
nC
A
s
ns
m
J
ns
m
J
1 Repetitive Rating: Pulse width limited by maximum junction temperature.
2
For Combi devices, I
ces
includes both IGBT and FRED leakages
3
See MIL-STD-750 Method 3471.
4
E
on1
is the clamped inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current
adding to the IGBT turn-on loss. Tested in inductive switching test circuit shown in figure 21, but with a Silicon Carbide diode.
5
E
on2
is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching
loss. (See Figures 21, 22.)
6
E
off
is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)
7 R
G
is external gate resistance, not including R
G(int)
nor gate driver impedance. (MIC4452)
APT Reserves the right to change, without notice, the specifications and information contained herein.
050-7611 Rev B 3-2005
APT200GN60JDQ4
TYPICAL PERFORMANCE CURVES
V
GS(TH)
, THRESHOLD VOLTAGE
V
CE
, COLLECTOR-TO-EMITTER VOLTAGE (V)
I
C
, COLLECTOR CURRENT (A)
I
C
, COLLECTOR CURRENT (A)
(NORMALIZED)
I
C,
DC COLLECTOR CURRENT(A)
V
CE
, COLLECTOR-TO-EMITTER VOLTAGE (V)
V
GE
, GATE-TO-EMITTER VOLTAGE (V)
I
C
, COLLECTOR CURRENT (A)
250s PULSE
TEST<0.5 % DUTY
CYCLE
400
350
300
250
200
150
100
50
0
400
350
300
250
200
150
100
50
0
3.0
2.5
2.0
1.5
1.0
0.5
0
1.15
1.10
1.05
1.00
0.95
0.90
0.85
0.80
0.75
0.70
0
0.5
1.0
1.5
2.0
2.5
3.0
0
5
10
15
20
25
30
0
2
4
6
8
10
12
0
200 400 600 800 1000 1200 1400
8
10
12
14
16
0
25
50
75 100 125 150 175
-50 -25
0
25 50
75 100 125 150
-50 -25 0 25 50 75 100 125 150 175
400
350
300
250
200
150
100
50
0
16
14
12
10
8
6
4
2
0
3.0
2.5
2.0
1.5
1.0
0.5
0
400
350
300
250
200
150
100
50
0
V
CE
, COLLECTER-TO-EMITTER VOLTAGE (V)
V
CE
, COLLECTER-TO-EMITTER VOLTAGE (V)
FIGURE 1, Output Characteristics(T
J
= 25C)
FIGURE 2, Output Characteristics (T
J
= 125C)
V
GE
, GATE-TO-EMITTER VOLTAGE (V)
GATE CHARGE (nC)
FIGURE 3, Transfer Characteristics
FIGURE 4, Gate Charge
V
GE
, GATE-TO-EMITTER VOLTAGE (V)
T
J
, Junction Temperature (C)
FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage
FIGURE 6, On State Voltage vs Junction Temperature
T
J
, JUNCTION TEMPERATURE (C)
T
C
, CASE TEMPERATURE (C)
FIGURE 7, Threshold Voltage vs. Junction Temperature
FIGURE 8, DC Collector Current vs Case Temperature
15V
7.5V
7V
T
J
= 125C
T
J
= 25C
T
J
= -55C
V
GE
= 15V.
250s PULSE TEST
<0.5 % DUTY CYCLE
T
J
= 125C
T
J
= 25C
T
J
= -55C
T
J
= 175C
V
GE
= 15V
9V
V
CE
= 300V
V
CE
= 120V
I
C
= 200A
T
J
= 25C
V
CE
= 480V
T
J
= 25C.
250s PULSE TEST
<0.5 % DUTY CYCLE
I
C
= 300A
I
C
= 150A
I
C
= 75A
I
C
= 300A
I
C
= 150A
I
C
= 75A
T
J
= 175C
13V
12V
8.5V
8V
050-7611 Rev B 3-2005
APT200GN60JDQ4
V
GE
=15V,T
J
=125C
V
GE
=15V,T
J
=25C
V
CE
=
400V
R
G
=
1.0
L = 100H
SWITCHING ENERGY LOSSES (J)
E
ON2
, TURN ON ENERGY LOSS (J)
t
r,
RISE TIME (ns)
t
d(ON)
, TURN-ON DELAY TIME (ns)
SWITCHING ENERGY LOSSES (J)
E
OFF
, TURN OFF ENERGY LOSS (J)
t
f,
FALL TIME (ns)
t
d
(OFF)
, TURN-OFF DELAY TIME (ns)
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
FIGURE 10, Turn-Off Delay Time vs Collector Current
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
FIGURE 12, Current Fall Time vs Collector Current
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
FIGURE 14, Turn Off Energy Loss vs Collector Current
R
G
, GATE RESISTANCE (OHMS)
T
J
, JUNCTION TEMPERATURE (C)
FIGURE 15, Switching Energy Losses vs. Gate Resistance
FIGURE 16, Switching Energy Losses vs Junction Temperature
V
CE
= 400V
T
J
= 25C
,
or
125C
R
G
= 1.0
L = 100H
60
50
40
30
20
10
0
180
160
140
120
100
80
60
40
20
0
35,000
30,000
25,000
20,000
15,000
10,000
5,000
0
70,000
60,000
50,000
40,000
30,000
20,000
10,000
0
800
700
600
500
400
300
200
100
0
250
200
150
100
50
0
25,000
20,000
15,000
10,000
5,000
0
35,000
30,000
25,000
20,000
15,000
10,000
5,000
0
V
GE
= 15V
T
J
=
125C, V
GE
=
15V
T
J
=
25C, V
GE
=
15V
V
CE
= 400V
V
GE
= +15V
R
G
= 1.0
40
80
120 160 200 240 280 320
40
80
120 160 200 240 280 320
40
80 120 160 200 240 280 320
40
80 120 160 200 240 280 320
40
80 120 160 200 240 280 320
40
80 120 160 200 240 280 320
0
5
10
15
20
0
25
50
75
100
125
R
G
=
1.0, L
=
100
H, V
CE
=
400V
R
G
=
1.0, L
=
100
H, V
CE
=
400V
T
J
=
25 or 125C,V
GE
=
15V
V
CE
= 400V
V
GE
= +15V
R
G
= 1.0
T
J
=
125C
T
J
=
25C
V
CE
= 400V
V
GE
= +15V
R
G
= 1.0
T
J
=
125C
T
J
=
25C
E
on2,
300A
E
off,
300A
E
on2,
200A
E
off,
200A
E
on2,
100A
E
off,
100A
V
CE
= 400V
V
GE
= +15V
T
J
= 125C
E
on2,
300A
E
off,
300A
E
on2,
200A
E
off,
100A
E
on2,
100A
E
off,
200A
050-7611 Rev B 3-2005
APT200GN60JDQ4
TYPICAL PERFORMANCE CURVES
0.25
0.20
0.15
0.10
0.05
0
Z
JC
, THERMAL IMPEDANCE (C/W)
0.3
0.7
SINGLE PULSE
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
10
-5
10
-4
10
-3
10
-2
10
-1
1.0
10
20,000
10,000
5000
1000
500
100
700
600
500
400
300
200
100
0
C, CAPACITANCE (
P
F)
I
C
, COLLECTOR CURRENT (A)
V
CE
, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
V
CE
, COLLECTOR TO EMITTER VOLTAGE
Figure 17, Capacitance vs Collector-To-Emitter Voltage
Figure 18,Minimim Switching Safe Operating Area
0
10
20
30
40
50
0
100 200 300 400 500 600 700
FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL
40 60
80 100 120 140 160 180 200
F
MAX
, OPERATING FREQUENCY (kHz)
I
C
, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector Current
T
J
= 125
C
T
C
= 75
C
D = 50 %
V
CE
= 400V
R
G
= 1.0
60
10
1
0.5
0.1
0.05
F
max
=
min (f
max
, f
max2
)
0.05
f
max1
=
t
d(on)
+ t
r
+ t
d(off)
+ t
f
P
diss
- P
cond
E
on2
+ E
off
f
max2
=
P
diss
=
T
J
- T
C
R
JC
C
0es
C
res
C
ies
Peak TJ = PDM x ZJC + TC
Duty Factor D =
t1
/
t2
t2
t1
P
DM
Note:
D = 0.9
0.0463
0.132
0.0414
0.0120
0.483
8.30
Power
(watts)
Junction
temp. (C)
RC MODEL
Case temperature. (C)
050-7611 Rev B 3-2005
APT200GN60JDQ4
Figure 22, Turn-on Switching Waveforms and Definitions
Figure 23, Turn-off Switching Waveforms and Definitions
T
J
= 125C
Collector Current
Collector Voltage
Gate Voltage
Switching Energy
5%
10%
t
d(on)
90%
10%
t
r
5%
T
J
= 125C
Collector Voltage
Collector Current
Gate Voltage
Switching Energy
0
90%
t
d(off)
10%
t
f
90%
APT100DQ60
I
C
A
D.U.T.
V
CE
Figure 21, Inductive Switching Test Circuit
V
CC
050-7611 Rev B 3-2005
APT200GN60JDQ4
TYPICAL PERFORMANCE CURVES
Z
JC
, THERMAL IMPEDANCE (C/W)
0.35
0.30
0.25
0.20
0.15
0.10
0.05
0
0.5
SINGLE PULSE
0.1
0.3
0.7
0.05
Peak TJ = PDM x ZJC + TC
Duty Factor D =
t1
/
t2
t2
t1
P
DM
Note:
D = 0.9
Characteristic / Test Conditions
Maximum Average Forward Current (T
C
= 108C, Duty Cycle = 0.5)
RMS Forward Current (Square wave, 50% duty)
Non-Repetitive Forward Surge Current (T
J
= 45C, 8.3ms)
Symbol
I
F
(AV)
I
F
(RMS)
I
FSM
Symbol
V
F
Characteristic / Test Conditions
I
F
= 200A
Forward Voltage
I
F
= 400A
I
F
= 200A, T
J
= 125C
STATIC ELECTRICAL CHARACTERISTICS
UNIT
Amps
UNIT
Volts
MIN
TYP
MAX
2.0
2.6
1.67
APT200GN60LDQ4
100
156
1000
DYNAMIC CHARACTERISTICS
MAXIMUM RATINGS
All Ratings: T
C
= 25C unless otherwise specified.


































































ULTRAFAST SOFT RECOVERY ANTI-PARALLEL DIODE
MIN
TYP
MAX
-
34
-
160
-
290
-
5
-
-
220
-
1530
-
13
-
-
100
-
2890
-
44
UNIT
ns
nC
Amps
ns
nC
Amps
ns
nC
Amps
Characteristic
Reverse Recovery Time
Reverse Recovery Time
Reverse Recovery Charge
Maximum Reverse Recovery Current
Reverse Recovery Time
Reverse Recovery Charge
Maximum Reverse Recovery Current
Reverse Recovery Time
Reverse Recovery Charge
Maximum Reverse Recovery Current
Symbol
t
rr
t
rr
Q
rr
I
RRM
t
rr
Q
rr
I
RRM
t
rr
Q
rr
I
RRM
Test Conditions
I
F
= 100A, di
F
/dt = -200A/s
V
R
= 400V, T
C
= 25C
I
F
= 100A, di
F
/dt = -200A/s
V
R
= 400V, T
C
= 125C
I
F
= 100A, di
F
/dt = -1000A/s
V
R
= 400V, T
C
= 125C
I
F
= 1A, di
F
/dt = -100A/s, V
R
= 30V, T
J
= 25C
10
-5
10
-4
10
-3
10
-2
10
-1
1.0
10
RECTANGULAR PULSE DURATION (seconds)
FIGURE 24a. MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs. PULSE DURATION
SINGLE PULSE
0.05
FIGURE 24b, TRANSIENT THERMAL IMPEDANCE MODEL
0.0673
0.188
0.0743
0.0182
0.361
5.17
Power
(watts)
Junction
temp
(C)
RC MODEL
Case temperature
(C)
050-7611 Rev B 3-2005
APT200GN60JDQ4
T
J
=125C
V
R
=400V
50A
100A
200A
Duty cycle = 0.5
T
J
=175C
0
25
50
75
100
125
150
25
50
75
100
125
150
175
1
10
100 200
180
160
140
120
100
80
60
40
20
0
Q
rr
, REVERSE RECOVERY CHARGE
I
F
, FORWARD CURRENT
(nC)
(A)
I
RRM
, REVERSE RECOVERY CURRENT
t
rr
, REVERSE RECOVERY TIME
(A)
(ns)
0
0.5
1.0
1.5
2.0 2.5
3.0
0
200
400
600
800 1000 1200
0
200
400
600
800 1000 1200
0
200
400
600
800 1000 1200
T
J
= -55C
T
J
= 25C
T
J
= 125C
T
J
= 175C
T
J
=125C
V
R
=400V
100A
50A
200A
300
250
200
150
100
50
0
4000
3500
3000
2500
2000
1500
1000
500
0
T
J
=125C
V
R
=400V
200A
100A
50A
300
250
200
150
100
50
0
60
50
40
30
20
10
0
C
J
, JUNCTION CAPACITANCE
K
f
, DYNAMIC PARAMETERS
(pF)
(Normalized to 1000A/

s)
I
F(AV)
(A)
Q
rr
t
rr
Q
rr
I
RRM
1.2
1.0
0.8
0.6
0.4
0.2
0.0
1400
1200
1000
800
600
400
200
0
t
rr
V
F
, ANODE-TO-CATHODE VOLTAGE (V)
-di
F
/dt, CURRENT RATE OF CHANGE(A/s)
Figure 25. Forward Current vs. Forward Voltage
Figure 26. Reverse Recovery Time vs. Current Rate of Change
-di
F
/dt, CURRENT RATE OF CHANGE (A/s)
-di
F
/dt, CURRENT RATE OF CHANGE (A/s)
Figure 27. Reverse Recovery Charge vs. Current Rate of Change
Figure 28. Reverse Recovery Current vs. Current Rate of Change
T
J
, JUNCTION TEMPERATURE (C)
Case Temperature (C)
Figure 29. Dynamic Parameters vs. Junction Temperature
Figure 30. Maximum Average Forward Current vs. CaseTemperature
V
R
, REVERSE VOLTAGE (V)
Figure 31. Junction Capacitance vs. Reverse Voltage
050-7611 Rev B 3-2005
APT200GN60JDQ4
TYPICAL PERFORMANCE CURVES
SOT-227 (ISOTOP
) Package Outline
31.5 (1.240)
31.7 (1.248)
Dimensions in Millimeters and (Inches)
7.8 (.307)
8.2 (.322)
30.1 (1.185)
30.3 (1.193)
38.0 (1.496)
38.2 (1.504)
14.9 (.587)
15.1 (.594)
11.8 (.463)
12.2 (.480)
8.9 (.350)
9.6 (.378)
Hex Nut M4
(4 places)
0.75 (.030)
0.85 (.033)
12.6 (.496)
12.8 (.504)
25.2 (0.992)
25.4 (1.000)
1.95 (.077)
2.14 (.084)
* Emitter/Anode
Collector/Cathode
Gate
*
r = 4.0 (.157)
(2 places)
4.0 (.157)
4.2 (.165)
(2 places)
W=4.1 (.161)
W=4.3 (.169)
H=4.8 (.187)
H=4.9 (.193)
(4 places)
3.3 (.129)
3.6 (.143)
* Emitter/Anode
Emitter/Anode terminals are
shorted internally. Current
handling capability is equal
for either Emitter/Anode terminal.
APT's products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522
5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved.
ISOTOP
is a Registered Trademark of SGS Thomson.
4
3
1
2
5
5
Zero
1
2
3
4
di
F
/dt - Rate of Diode Current Change Through Zero Crossing.
I
F
- Forward Conduction Current
I
RRM
- Maximum Reverse Recovery Current.
trr - Reverse
R
ecovery Time, measured from zero crossing where
diode
Qrr - Area Under the Curve Defined by I
RRM
and trr.
current goes from positive to negative, to the point at which the straight
line through I
RRM
and 0.25 I
RRM
passes through zero.
Figure 32. Diode Test Circuit
Figure 33, Diode Reverse Recovery Waveform and Definitions
0.25 IRRM
PEARSON 2878
CURRENT
TRANSFORMER
di
F
/dt Adjust
30H
D.U.T.
+18V
0V
Vr
trr/Qrr
Waveform
APT60M75L2LL